人工神经网络
时间:2015-12-08
  摘要:人工神经网络是人工智能领域的一个研究热点。

点题:人工神经网络(Artificial Neural Network )是20世纪80 年代以来人工智能领域兴起的研究热点。神经网络对信息的处理具有自组织、自学习的特点,便于联想、综合和推广。神经网络以其优越的性能应用在人工智能、计算机科学、模式识别、控制工程、信号处理、联想记忆等极其广泛的领域。

----------------------------------------------------------------------------------------------

 

一、定义

人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。

神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。

最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。


(图片源于网络)

二、基本特征

人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。人工神经网络具有四个基本特征:

(1)非线性:非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。

(2)非局限性:一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。

(3)非常定性:人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。

(4)非凸性:一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。

三、发展历史

1943年,心理学家W.S.McCulloch和数理逻辑学家W.Pitts建立了神经网络和数学模型,称为MP模型。他们通过MP模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。1949年,心理学家提出了突触联系强度可变的设想。60年代,人工神经网络得到了进一步发展,更完善的神经网络模型被提出,其中包括感知器和自适应线性元件等。1969年M.Minsky等出版了《Perceptron》一书,指出感知器不能解决高阶谓词问题。1982年,美国加州工学院物理学家J.J.Hopfield提出了Hopfield神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。 1984年,他又提出了连续时间Hopfield神经网络模型,为神经计算机的研究做了开拓性的工作。1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。1986年提出了并行分布处理的理论。1986年,Rumelhart, Hinton, Williams发展了BP算法。迄今,BP算法已被用于解决大量实际问题。1988年,Linsker对感知机网络提出了新的自组织理论,并在Shanon信息论的基础上形成了最大互信息理论。1988年,Broomhead和Lowe用径向基函数提出分层网络的设计方法。90年代初,Vapnik等提出了支持向量机和VC维数的概念。人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。在日本的“真实世界计算(RWC)”项目中,人工智能的研究成了一个重要的组成部分。


(图片源于网络)

四、网络模型编辑

人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型。

根据连接的拓扑结构,神经网络模型可以分为:

1、前向网络

网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。反传网络是一种典型的前向网络。

2、反馈网络

网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。

五、学习类型

学习是神经网络研究的一个重要内容,它的适应性是通过学习实现的。根据环境的变化,对权值进行调整,改善系统的行为。人们提出了各种学习规则和算法,以适应不同网络模型的需要。

根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。

在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练后收敛到一个确定的权值。当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学习的神经网络模型有反传网络、感知器等。

非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段成为一体。此时,学习规律的变化服从连接权值的演变方程。


(图片源于网络)

六、特点优点

人工神经网络的特点和优越点,主要表现在三个方面:

第一,具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途将很远大的。

第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。

第三,具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

七、研究方向

神经网络的研究可以分为理论研究和应用研究两大方面。

理论研究可分为以下两类:

1、利用神经生理与认知科学研究人类思维以及智能机理。

2、利用神经基础理论的研究成果,用数理方法探索功能更加完善、性能更加优越的神经网络模型,深入研究网络算法和性能,如:稳定性、收敛性、容错性、鲁棒性等;开发新的网络数理理论,如:神经网络动力学、非线性神经场等。

应用研究可分为以下两类:

1、神经网络的软件模拟和硬件实现的研究。

2、神经网络在各个领域中应用的研究。这些领域主要包括:模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。随着神经网络理论本身以及相关理论、相关技术的不断发展,神经网络的应用定将更加深入。

八、发展趋势

人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。

近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。

神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。其中,具有分布存储、并行处理、自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经成为一大研究热点。由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可以获得更好的应用效果。


(图片源于网络)

九、应用分析

经过几十年的发展,神经网络理论在模式识别、自动控制、信号处理、辅助决策、人工智能等众多研究领域取得了广泛的成功。以下是神经网络在一些领域中的应用现状。

人工神经网络在信息领域中的应用

在处理许多问题中,信息来源既不完整,又包含假象,决策规则有时相互矛盾,有时无章可循,这给传统的信息处理方式带来了很大的困难,而神经网络却能很好的处理这些问题,并给出合理的识别与判断。

主要包括:1.信息处理;2. 模式识别。

人工神经网络在医学中的应用

由于人体和疾病的复杂性、不可预测性,在生物信号与信息的表现形式上、变化规律(自身变化与医学干预后变化)上,对其进行检测与信号表达,获取的数据及信息的分析、决策等诸多方面都存在非常复杂的非线性联系,适合人工神经网络的应用。目前的研究几乎涉及从基础医学到临床医学的各个方面,主要应用在生物信号的检测与自动分析,医学专家系统等。

主要包括:1. 生物信号的检测与分析;2. 医学专家系统。

人工神经网络在经济领域的应用

主要包括:1. 市场价格预测;2. 风险评估。

人工神经网络在控制领域中的应用

人工神经网络由于其独特的模型结构和固有的非线性模拟能力,以及高度的自适应和容错特性等突出特征,在控制系统中获得了广泛的应用。其在各类控制器框架结构的基础上,加入了非线性自适应学习机制,从而使控制器具有更好的性能。基本的控制结构有监督控制、直接逆模控制、模型参考控制、内模控制、预测控制、最优决策控制等。

人工神经网络在交通领域的应用

近年来人们对神经网络在交通运输系统中的应用开始了深入的研究。交通运输问题是高度非线性的,可获得的数据通常是大量的、复杂的,用神经网络处理相关问题有它巨大的优越性。应用范围涉及到汽车驾驶员行为的模拟、参数估计、路面维护、车辆检测与分类、交通模式分析、货物运营管理、交通流量预测、运输策略与经济、交通环保、空中运输、船舶的自动导航及船只的辨认、地铁运营及交通控制等领域并已经取得了很好的效果。

人工神经网络在心理学领域的应用

从神经网络模型的形成开始,它就与心理学就有着密不可分的联系。神经网络抽象于神经元的信息处理功能,神经网络的训练则反映了感觉、记忆、学习等认知过程。人们通过不断地研究, 变化着人工神经网络的结构模型和学习规则,从不同角度探讨着神经网络的认知功能,为其在心理学的研究中奠定了坚实的基础。近年来,人工神经网络模型已经成为探讨社会认知、记忆、学习等高级心理过程机制的不可或缺的工具。人工神经网络模型还可以对脑损伤病人的认知缺陷进行研究,对传统的认知定位机制提出了挑战。

虽然人工神经网络已经取得了一定的进步,但是还存在许多缺陷,例如:应用的面不够宽阔、结果不够精确;现有模型算法的训练速度不够高;算法的集成度不够高;同时我们希望在理论上寻找新的突破点, 建立新的通用模型和算法。需进一步对生物神经元系统进行研究,不断丰富人们对人脑神经的认识。

 

(技术研发与网络运维中心摘编)

参考来源:

[百度百科]

人工神经网络

http://baike.baidu.com/view/19743.htm

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

延伸阅读:

IBM发布新型SyNAPSE芯片 开创巨型神经网络时代

http://network.chinabyte.com/8/13044008.shtml

谷歌神经网络技术已实现数十种语言实时翻译

http://www.ailab.cn/algorithm/neuralnetwork/2015073025854.html

Google的人工神经网络(Deep Dream)的画作

http://www.douban.com/note/507529077/

最新计算机神经网络识别图像达灵长类动物水平

http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2014-12/22/content_287321.htm?div=-1

  

========================================================

 

转载声明:凡注明来源的作品,均转载自其它网络媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如转载行为无意中侵犯了来源网站的版权,敬请告之,我们将在第一时间予以删除。