量子通信(Quantum Teleportation)
时间:2016-01-19
  摘要:“多光子纠缠及干涉度量”项目获得了2015年度国家自然科学奖一等奖,量子通信又一次成为了热点词汇。



点题: 20161月,国家科学技术奖励大会在北京人民大会堂召开,备受瞩目的2015年度国家自然科学奖一等奖,颁发给了中国科学技术大学潘建伟院士领衔的“多光子纠缠及干涉度量”项目。

由于潘院士在“量子通信”领域的研究已经在全球领先,一时间,量子通信再度成为了备受业内关注的热点。由于是一种前沿的通信技术,量子通信目前仍有很多的技术问题没有得到解决,基础研究也有众多的谜团尚待破解,此项通信技术的产业化尚处初始阶段。

------------------------------------------------------------------------------------------------


 (图片源于网络)


 

一、概念

量子通信(Quantum Teleportation)是指利用量子纠缠效应进行信息传递的一种新型的通信方式。量子通信是近二十年发展起来的新型交叉学科,是量子论和信息论相结合的新的研究领域。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等,近来这门学科已逐步从理论走向实验,并向实用化发展。高效安全的信息传输日益受到人们的关注。基于量子力学的基本原理,并因此成为国际上量子物理和信息科学的研究热点。

量子通信是经典信息论和量子力学相结合的一门新兴交叉学科,与此刻成熟的通信技术相比,量子通信具有巨大的优越性,具有保密性强、大容量、远距离传输等特点。量子通信不仅在军事、国防等领域具有重要的作用,而且会极大地促进国民经济的发展。

二、简介

量子通信主要基于量子纠缠态的理论,使用量子隐形传态(传输)的方式实现信息传递。根据实验验证,具有纠缠态的两个粒子无论相距多远,只要一个发生变化,另外一个也会瞬间发生变化,利用这个特性实现光量子通信的过程如下:事先构建一对具有纠缠态的粒子,将两个粒子分别放在通信双方,将具有未知量子态的粒子与发送方的粒子进行联合测量(一种操作),则接收方的粒子瞬间发生坍塌(变化),坍塌(变化)为某种状态,这个状态与发送方的粒子坍塌(变化)后的状态是对称的,然后将联合测量的信息通过经典信道传送给接收方,接收放根据接收到的信息对坍塌的粒子进行幺正变换(相当于逆转变换),即可得到与发送方完全相同的未知量子态。

由于人们对纠缠态粒子之间的相互影响一直有所怀疑,几十年来,物理学家一直试图验证这种神奇特性是否真实。

1982年,法国物理学家艾伦·爱斯派克特(Alain Aspect)和他的小组成功地完成了一项实验,证实了微观粒子“量子纠缠”(quantum entanglement)的现象确实存在,这一结论对西方科学的主流世界观产生了重大的冲击。在量子纠缠理论的基础上,1993年,美国科学家C.H.Bennett提出了量子通信(Quantum Teleportation)的概念。量子通信是由量子态携带信息的通信方式,它利用光子等基本粒子的量子纠缠原理实现保密通信过程。量子通信概念的提出,使爱因斯坦的“幽灵(Spooky)” ——量子纠缠效益开始真正发挥其真正的威力。1993年,在贝内特提出量子通信概念以后,6位来自不同国家的科学家,基于量子纠缠理论,提出了利用经典与量子相结合的方法实现量子隐形传送的方案,即将某个粒子的未知量子态传送到另一个地方,把另一个粒子制备到该量子态上,而原来的粒子仍留在原处,这就是量子通信最初的基本方案。量子隐形传态不仅在物理学领域对人们认识与揭示自然界的神秘规律具有重要意义,而且可以用量子态作为信息载体,通过量子态的传送完成大容量信息的传输,实现原则上不可破译的量子保密通信。1997年在奥地利留学的中国青年学者潘建伟与荷兰学者波密斯特等人合作,首次实现了未知量子态的远程传输。这是国际上首次在实验上成功地将一个量子态从甲地的光子传送到乙地的光子上。实验中传输的只是表达量子信息的“状态”,作为信息载体的光子本身并不被传输。

经过二十多年的发展,量子通信这门学科已逐步从理论走向实验,并向实用化发展,主要涉及的领域包括:量子密码通信、量子远程传态和量子密集编码等。


 

(图片源于网络)

 

三、应用与用途

量子通信具有传统通信方式所不具备的绝对安全特性,不但在国家安全、金融等信息安全领域有着重大的应用价值和前景,而且逐渐走进人们的日常生活。

为了让量子通信从理论走到现实,从上世纪90年代开始,国内外科学家做了大量的研究工作。自1993年美国IBM的研究人员提出量子通信理论以来,美国国家科学基金会和国防高级研究计划局都对此项目进行了深入的研究,欧盟在1999年集中国际力量致力于量子通信的研究,研究项目多达12个,日本邮政省把量子通信作为21世纪的战略项目。我国从上世纪80年代开始从事量子光学领域的研究,近几年来,中国科学技术大学的量子研究小组在量子通信方面取得了突出的成绩。

2003年,韩国、中国、加拿大等国学者提出了诱骗态量子密码理论方案,彻底解决了真实系统和现有技术条件下量子通信的安全速率随距离增加而严重下降的问题。

2006年夏,我国中国科学技术大学教授潘建伟小组、美国洛斯阿拉莫斯国家实验室、欧洲慕尼黑大学—维也纳大学联合研究小组各自独立实现了诱骗态方案,同时实现了超过100公里的诱骗态量子密钥分发实验,由此打开了量子通信走向应用的大门。

2008年底,潘建伟的科研团队成功研制了基于诱骗态的光纤量子通信原型系统,在合肥成功组建了世界上首个3节点链状光量子电话网,成为国际上报道的绝对安全的实用化量子通信网络实验研究的两个团队之一(另一小组为欧洲联合实验团队)。

2009年9月,潘建伟的科研团队正是在3节点链状光量子电话网的基础上,建成了世界上首个全通型量子通信网络,首次实现了实时语音量子保密通信。这一成果在同类产品中位居国际先进水平,标志着中国在城域量子网络关键技术方面已经达到了产业化要求。


 

(图片源于网络)

 

四、研究突破

据《新科学家》杂志等媒体综合报道,一支意大利和奥地利科学家小组宣布,他们首次识别出从地球上空1500公里处的人造卫星上反弹回地球的单批光子,实现了太空绝密传输量子信息的重大突破。这一突破标明在太空和地球之间可以构建安全的量子通道来传输信息,用于全球通信。此研究成果即将发表在《新物理学杂志》(New Journal of Physics)上。

意大利帕多瓦大学的保罗·维罗来斯和恺莎尔·巴伯利领导此研究小组,成功地利用意大利名为马泰拉(Matera)激光测距天文台的1.5米望远镜向地球上空1500公里处的日本阿吉沙(Ajisai)人造卫星发射出光子并让此卫星将这些光子反弹回到了原始出发地。这标志着无法偷听的量子编码通信可望通过人造卫星来实现。

2007年6月,一个由奥地利、英国、德国研究人员组成的小组在量子通信研究中通过创下了通信距离达144公里的最远纪录。

为证实地面能观测到从轨道卫星上发送回来的光子,此研究小组从意大利马泰拉(Matera)激光测距天文台的望远镜向阿吉沙(Ajisai)人造卫星发射出一束普通的激光。阿吉沙(Ajisai)人造卫星由318面镜片组成,从精确的镜片上反弹回来的单批光子成功地回到了此天文台。参与此项研究的奥地利维也纳的量子光学和量子信息研究所著名量子物理学家安顿·宰林格(Anton Zeilinger)认为太空至地球的量子通信是一项可行技术。

五、中国研究

中国科学技术大学合肥微尺度物质科学国家实验室的潘建伟教授及其同事,利用冷原子量子存储技术在国际上首次实现了具有存储和读出功能的纠缠交换,建立了由300米光纤连接的两个冷原子系综之间的量子纠缠。这种冷原子系综之间的量子纠缠可以被读出并转化为光子纠缠以进行进一步的传输和量子操作。该实验成果完美地实现了长程量子通信中亟需的“量子中继器”,向未来广域量子通信网络的最终实现迈出了坚实的一步。


 

(中国科学技术大学合肥微尺度物质科学国家实验室潘建伟院士)

 

2010年,中国科学技术大学和清华大学的研究人员完成了一项创举,他们的自由空间量子通信实验将通信距离从先前的数百米记录一步跨越到16公里。此刻,中国科学技术大学上海研究院的研究人员再次创造了新纪录,他们将通信距离扩大到了97公里,横跨中国的一个湖泊。研究人员在海拔约4000米的青海刚察湖上完成了这次自由空间信道量子实验,他们不是在湖这边发射光子,然后让它在湖对岸重新出现,而是利用量子纠缠——即两个量子态互相影响的粒子——在新地点重新创造出相同的量子比特。他们在四个多小时内向97公里外远距传输了1100多个光子。将量子通信距离延长到100公里意味着可以从地面与卫星进行通信,全球范围的量子通信正在变成现实。

中国科学技术大学教授潘建伟、彭承志、陈宇翱等人,与中科院上海技术物理研究所王建宇、光电技术研究所黄永梅等组成联合团队,于2011年10月在青海湖首次成功实现了百公里量级的自由空间量子隐形传态和纠缠分发。实验证明,无论是从地面指向卫星的上行量子隐形传态,还是卫星指向两个地面站的下行双通道量子纠缠分发均可行,为基于卫星的广域量子通信和大尺度量子力学原理检验奠定了技术基础。

在高损耗的地面成功传输100公里,意味着在低损耗的太空传输距离将可以达到1000公里以上,基本上解决了量子通信卫星的远距离信息传输问题。已量子通信卫星核心技术的突破,也表明未来构建全球量子通信网络具备技术可行性。

2013年10月,中国科学技术大学郭光灿院士领导的中科院量子信息重点实验室在高维量子信息存储方面取得重要进展:该实验室史保森教授领导的研究小组在国际上首次实现了携带轨道角动量、具有空间结构的单光子脉冲在冷原子系综中的存储与释放。这项研究成果在线发表在《自然·通信》上。

中科大网站2013年10月报道,中国科学技术大学郭光灿院士领导的中科院量子信息重点实验室在高维量子信息存储方面取得重要进展,该实验室史保森教授领导的研究小组在2013年首次成功地实现了携带轨道角动量、具有空间结构的单光子脉冲的存储与释放,证明了高维量子态的存储是完全可行的。该小组通过两个磁光阱制备了两个冷原子团,利用其中一个冷原子团通过非线性过程制备标记单光子,并通过螺旋相位片使该光子携带一定的轨道角动量,具有特殊的空间结构。而后利用电磁诱导透明效应将其存储于另一个作为存储介质的冷原子团中,实验结果清楚地证明了单光子携带的轨道角动量可以高保真地被存储。同时该小组借助于精心设计的Sagnac干涉仪,通过量子层析技术和干涉技术成功地证明了单光子轨道角动量的叠加性也可以在存储过程中很好地保持,而态的叠加特性是量子信息之所以不同于经典信息的根本之处。 从而在国际上首次实现了携带轨道角动量、具有空间结构的单光子脉冲在冷原子系综中的存储与释放,证明了建立高维量子存储单元的可行性,迈出了基于高维量子中继器实现远距离大信息量量子信息传输的关键一步。


 

(图片源于网络)

 

六、通信网

作为新一代通信技术,量子通信基于量子信息传输的高效和绝对安全性,成

为近几年来国际科研竞争中的焦点领域之一。合肥城域量子通信试验示范网于2010年7月启动建设,投入经费6000多万元。经过中国科学技术大学和安徽量子通信技术有限公司科研人员历时1年多的努力,项目建成后试运行,各项功能、指标均达到设计要求。该项目2012年3月29日通过安徽省科技厅组织的专家组验收,30日正式投入使用。

具有46个节点的量子通信网覆盖合肥市主城区,使用光纤约1700公里,通过6个接入交换和集控站,连接40组“量子电话”用户和16组“量子视频”用户。此刻主要用户为对信息安全要求较高的政府机关、金融机构、医疗机构、军工企业及科研院所,如合肥市公安局、合肥市应急指挥中心、中国科学技术大学、合肥第三人民医院及部分银行网点等。

合肥量子通信网的建成使用,标志着我国继量子信息基础研究跻身全球一流水平后,在量子信息先期产业化竞争中也迈出了重要一步。此刻,我国北京、济南、乌鲁木齐等城市的城域量子通信网也在建设之中,未来这些城市将通过量子卫星等方式联接,形成我国的广域量子通信体系。

七、最新新闻

据2015年12月的新闻报道,由中国科学家自主研发的世界首颗量子科学实验卫星,将于2016年6月前发射,这有望使中国先于欧美拥有量子通信覆盖全球的能力。目前,量子卫星的关键部件的研制与交付已经完成。

2016年1月,2015年度国家科学技术奖揭晓。中国科学技术大学潘建伟院士领衔的“多光子纠缠及干涉度量”项目获得本年度最高奖——国家自然科学奖一等奖。

(技术研发与网络运维中心摘编)

 

参考来源:

[百度百科]

http://baike.baidu.com/view/380282.htm

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

延伸阅读:

量子通信技术应用前景广阔

http://tech.hexun.com/2015-07-02/177219418.html

中国终于也有了黑科技:量子通信产业化已超美国

http://military.china.com/zh_cn/important/11132797/20151230/21042967_all.html

中国将发射世界首颗量子通信卫星

http://tech.qq.com/a/20151127/020517.htm

 

========================================================

 

转载声明:凡注明来源的作品,均转载自其它网络媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如转载行为无意中侵犯了来源网站的版权,敬请告之,我们将在第一时间予以删除。